skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tuna, Semih"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A range of stellar explosions, including supernovae (SNe), tidal disruption events (TDE), and fast blue optical transients (FBOTs), can occur in dusty environments initially opaque to transients’ optical/UV light, becoming visible only once the dust is destroyed by transients’ rising luminosity. We present axisymmetric, time-dependent radiation transport simulations of dust-shrouded transients withAthena++and tabulated gray opacities, predicting the light curves of the dust-reprocessed infrared (IR) radiation. The luminosity and timescale of the IR light curve depend on whether the transient rises rapidly or slowly compared to the light-crossing time of the photosphere,tlc. For slow-rising transients (trise ≫ tlc) like SNe, the reprocessed IR radiation diffuses outward through the dust shell faster than the shell sublimates; the IR light curve therefore begins rising prior to the escape of UV/optical light, but peaks on a timescale ∼triseshorter than the transient duration. By contrast, for fast-rising transients (trise ≪ tlc) such as FBOTs and some TDEs, the finite light-travel time results in the reprocessed radiation arriving as an “echo” lasting much longer than the transient itself. We explore the effects of the system geometry by considering a torus-shaped distribution of dust. The IR light curves seen by observers in the equatorial plane of the torus resemble those for a spherical dust shell, while polar observers see faster-rising, brighter, and shorter-lived emission. We successfully model the IR excess seen in AT2018cow as a dust echo, supporting the presence of an opaque dusty medium surrounding FBOTs prior to explosion. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026